3.578 \(\int \frac {(a^2+2 a b x^2+b^2 x^4)^{3/2}}{x^4} \, dx\)

Optimal. Leaf size=161 \[ -\frac {3 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{x \left (a+b x^2\right )}+\frac {3 a b^2 x \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2}+\frac {b^3 x^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 \left (a+b x^2\right )}-\frac {a^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 x^3 \left (a+b x^2\right )} \]

[Out]

-1/3*a^3*((b*x^2+a)^2)^(1/2)/x^3/(b*x^2+a)-3*a^2*b*((b*x^2+a)^2)^(1/2)/x/(b*x^2+a)+3*a*b^2*x*((b*x^2+a)^2)^(1/
2)/(b*x^2+a)+1/3*b^3*x^3*((b*x^2+a)^2)^(1/2)/(b*x^2+a)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1112, 270} \[ -\frac {a^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 x^3 \left (a+b x^2\right )}-\frac {3 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{x \left (a+b x^2\right )}+\frac {3 a b^2 x \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2}+\frac {b^3 x^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)/x^4,x]

[Out]

-(a^3*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(3*x^3*(a + b*x^2)) - (3*a^2*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(x*(a +
 b*x^2)) + (3*a*b^2*x*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(a + b*x^2) + (b^3*x^3*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])
/(3*(a + b*x^2))

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int \frac {\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}}{x^4} \, dx &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \frac {\left (a b+b^2 x^2\right )^3}{x^4} \, dx}{b^2 \left (a b+b^2 x^2\right )}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \int \left (3 a b^5+\frac {a^3 b^3}{x^4}+\frac {3 a^2 b^4}{x^2}+b^6 x^2\right ) \, dx}{b^2 \left (a b+b^2 x^2\right )}\\ &=-\frac {a^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 x^3 \left (a+b x^2\right )}-\frac {3 a^2 b \sqrt {a^2+2 a b x^2+b^2 x^4}}{x \left (a+b x^2\right )}+\frac {3 a b^2 x \sqrt {a^2+2 a b x^2+b^2 x^4}}{a+b x^2}+\frac {b^3 x^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}{3 \left (a+b x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 59, normalized size = 0.37 \[ -\frac {\sqrt {\left (a+b x^2\right )^2} \left (a^3+9 a^2 b x^2-9 a b^2 x^4-b^3 x^6\right )}{3 x^3 \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)/x^4,x]

[Out]

-1/3*(Sqrt[(a + b*x^2)^2]*(a^3 + 9*a^2*b*x^2 - 9*a*b^2*x^4 - b^3*x^6))/(x^3*(a + b*x^2))

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 36, normalized size = 0.22 \[ \frac {b^{3} x^{6} + 9 \, a b^{2} x^{4} - 9 \, a^{2} b x^{2} - a^{3}}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^4,x, algorithm="fricas")

[Out]

1/3*(b^3*x^6 + 9*a*b^2*x^4 - 9*a^2*b*x^2 - a^3)/x^3

________________________________________________________________________________________

giac [A]  time = 0.16, size = 67, normalized size = 0.42 \[ \frac {1}{3} \, b^{3} x^{3} \mathrm {sgn}\left (b x^{2} + a\right ) + 3 \, a b^{2} x \mathrm {sgn}\left (b x^{2} + a\right ) - \frac {9 \, a^{2} b x^{2} \mathrm {sgn}\left (b x^{2} + a\right ) + a^{3} \mathrm {sgn}\left (b x^{2} + a\right )}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^4,x, algorithm="giac")

[Out]

1/3*b^3*x^3*sgn(b*x^2 + a) + 3*a*b^2*x*sgn(b*x^2 + a) - 1/3*(9*a^2*b*x^2*sgn(b*x^2 + a) + a^3*sgn(b*x^2 + a))/
x^3

________________________________________________________________________________________

maple [A]  time = 0.01, size = 56, normalized size = 0.35 \[ -\frac {\left (-b^{3} x^{6}-9 a \,b^{2} x^{4}+9 a^{2} b \,x^{2}+a^{3}\right ) \left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {3}{2}}}{3 \left (b \,x^{2}+a \right )^{3} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^4,x)

[Out]

-1/3*(-b^3*x^6-9*a*b^2*x^4+9*a^2*b*x^2+a^3)*((b*x^2+a)^2)^(3/2)/x^3/(b*x^2+a)^3

________________________________________________________________________________________

maxima [A]  time = 1.29, size = 33, normalized size = 0.20 \[ \frac {1}{3} \, b^{3} x^{3} + 3 \, a b^{2} x - \frac {3 \, a^{2} b}{x} - \frac {a^{3}}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^4,x, algorithm="maxima")

[Out]

1/3*b^3*x^3 + 3*a*b^2*x - 3*a^2*b/x - 1/3*a^3/x^3

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{3/2}}{x^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2)/x^4,x)

[Out]

int((a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2)/x^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**4+2*a*b*x**2+a**2)**(3/2)/x**4,x)

[Out]

Integral(((a + b*x**2)**2)**(3/2)/x**4, x)

________________________________________________________________________________________